w załączniku
potrzebuję wyjaśnienia​


W Załącznikupotrzebuję Wyjaśnienia class=

Odpowiedź :

Odpowiedź:

Szczegółowe wyjaśnienie:

Żeby ciąg był arytmetyczny to różnica dwóch kolejnych wyrazów musi być stała

Więc dla dowolnego ciągu arytmetycznego

[tex]a_{n+1} - a_{n} = r[/tex]

Sprawdzamy

[tex]a_n = 6n^2 - n^3\\a_{n+1} - a_{n} =\\ 6(n+1)^2 - (n+1)^3 -(6n^2 - n^3) =\\ 6n^2 + 12n + 6 - n^3 -3n^2 - 3n -1 -6n^2 +n^3 = \\-3n^2 + 9n+ 5[/tex]

Nie jest wartością stałą

[tex]b_n = 2n + 13\\b_{n+1} - b{n} = \\2(n+1) + 13 -(2n + 13) = \\2\\[/tex]

To jest ciąg arytmetyczny

[tex]c_n = 2^n\\c_{n+1} - c_n = \\2^{n+1} - 2^n = 2*2^n - 2^n = 2^n\\[/tex]

To też nie jest ciąg arytmetyczny

Prawidłowa odpowiedź b - to jest jedyny ciąg arytmetyczny

Powyższe obliczenia były tylko dla pokazania cechy ciągu arytmetycznego ale bez obliczeń wiadomo że ciąg arytmetyczny jest postaci

[tex]a_n = a_0 + rn[/tex]

i tylko ciąg b ma tą formę