Odpowiedź :
[tex]\dfrac{x^2}{x+2}=4\\\\\\x+2\not=0\\x\not=-2\\\\\\\dfrac{x^2}{x+2}=4\\\\x^2=4(x+2)\\x^2=4x+8\\x^2-4x-8=0\\x^2-4x+4-12=0\\(x-2)^2=12\\x-2=\sqrt{12} \vee x-2=-\sqrt{12}\\x=2+2\sqrt3 \vee x=2-2\sqrt3[/tex]
Odpowiedź:
[tex]\frac{x^{2} }{x+2} =4[/tex] (mnożymy na krzyż)
[tex]x^{2}[/tex]=4x+8 |-4x-8
[tex]x^{2}[/tex]-4x-8=0[tex]\sqrt{48}[/tex]
Liczymy deltę:
Δ=b²-4ac
a=1
b=-4
c=-8
Δ=16-4*1*(-8)=16+32=48 √Δ=√48
[tex]x_{1}[/tex]=[tex]\frac{4-\sqrt{48} }{2}[/tex]= 2-[tex]\sqrt{48}[/tex]
[tex]x_{2}[/tex]=[tex]\frac{4+\sqrt{48} }{2}[/tex]=2+[tex]\sqrt{48}[/tex]
Szczegółowe wyjaśnienie: