Odpowiedź:
Szczegółowe wyjaśnienie:
a x b = [tex]\left[\begin{array}{cccc}i&j&k&l\\1&2&-3&0\\3&-1&1&-2\end{array}\right] =i*2*1-i*0*1+j*(-3)(-2)-j*1*(-2)+k*0*3-k*(-3)*0+l*1*(-1)-l*(-3)*(-1)=2i-0i+6j+2j+0k-0k-1l-3l=2i+8j+ok-4l=[2, 8, 0, -4][/tex]
a x c = [tex]\left[\begin{array}{cccc}i&j&k&l\\1&2&-3&0\\-2&1&0&-1\end{array}\right] = i*2*0-i*0*0+j*(-3)*(-1)-j*1*(-1)+k*0*(-1)-k*2*(-2)+l*1*1-l*(-3)*1=0i-0i+3j+1j+0k+4k+1l+3l=0i+4j+4k+4l=[0, 4, 4, 4][/tex]
a x b + a x b = [2,8,0,-4]+[0,4,4,4]=[2,12,4,0]