Odpowiedź :
sinα = 3/11 a=3 c=11
więc:
bok b b²+a²=c²
b²= c²- a²
to b²= 112
b= √112
sinβ= √112/11
cosβ= 3/11
tgβ= √112/3
ctgβ= 3/√112
więc:
bok b b²+a²=c²
b²= c²- a²
to b²= 112
b= √112
sinβ= √112/11
cosβ= 3/11
tgβ= √112/3
ctgβ= 3/√112
sinβ=4 √ 7/11
cosβ=3/11
tgβ=4 √ 7/3
ctgβ=3/4 √ 7
zakładając ze kąt alfa jest w pierwszej ćwiartce
cosβ=3/11
tgβ=4 √ 7/3
ctgβ=3/4 √ 7
zakładając ze kąt alfa jest w pierwszej ćwiartce
sinα = 3/11
a:c = 3:11
a = (3/11)*c
b = √[c² - (9/121)*c²]
b = √[(112/121)*c²]
b = (4/11)*√7*c
sinβ = b/c
sinβ = (4/11)*√7
cosβ = a/c = sinα = 3/11
tgβ = sinβ / cosβ = b/a
tgβ = (4/3)*√7
ctgβ = cosβ / sinβ = 1/tgβ = a/b
ctgβ = (3/28)*√7
a:c = 3:11
a = (3/11)*c
b = √[c² - (9/121)*c²]
b = √[(112/121)*c²]
b = (4/11)*√7*c
sinβ = b/c
sinβ = (4/11)*√7
cosβ = a/c = sinα = 3/11
tgβ = sinβ / cosβ = b/a
tgβ = (4/3)*√7
ctgβ = cosβ / sinβ = 1/tgβ = a/b
ctgβ = (3/28)*√7