Odpowiedź :
a)
1/64-1/128=1/128
b)
(1/3+1/4)^-2+1/4:(49/4)+2/49=
144/49+1/49+2/49=147/49=3
1/64-1/128=1/128
b)
(1/3+1/4)^-2+1/4:(49/4)+2/49=
144/49+1/49+2/49=147/49=3
a) (½)⁶-(½)⁷=(½)⁶*(1-½)=(½)⁶*(½)=(½)⁷=1/128
b) (3⁻¹+2⁻²)⁻²+4⁻¹:[2/7]⁻²+2/49=
=(1/3+(1/2)²)⁻²+1/4:(7/2)²+2/49=(1/3+1/4)⁻²+(1/4)*(4/49)+2/49=
=(4/12+3/12)⁻²+(1/49)+(2/49)=
=(7/12)⁻²+3/49=(12/7)²+(3/49)=144/49+3/49=147/49=3
b) (3⁻¹+2⁻²)⁻²+4⁻¹:[2/7]⁻²+2/49=
=(1/3+(1/2)²)⁻²+1/4:(7/2)²+2/49=(1/3+1/4)⁻²+(1/4)*(4/49)+2/49=
=(4/12+3/12)⁻²+(1/49)+(2/49)=
=(7/12)⁻²+3/49=(12/7)²+(3/49)=144/49+3/49=147/49=3