Odpowiedź :
a.
W[x]=2x³+4x²+2x = 2x (x² + 2x + 1) = 2x (x+1)² = 2x (x+1)(x+1)
b.
W[x]=x³-2x²-2x+4 = x²(x - 2) -2(x - 2) = (x-2)(x²-2) = (x-2)(x-√2)(x+√2)
W[x]=2x³+4x²+2x = 2x (x² + 2x + 1) = 2x (x+1)² = 2x (x+1)(x+1)
b.
W[x]=x³-2x²-2x+4 = x²(x - 2) -2(x - 2) = (x-2)(x²-2) = (x-2)(x-√2)(x+√2)
W[x]=2x³+4x²+2x
W[x] = 2x(x²+2x+1)
w[x] = 2x(x+1)²
W[x]=x³-2x²-2x+4
W[x]=x²(x-2)-2(x-2)
W[x] = (x-2)(x²-2)
W[x] = 2x(x²+2x+1)
w[x] = 2x(x+1)²
W[x]=x³-2x²-2x+4
W[x]=x²(x-2)-2(x-2)
W[x] = (x-2)(x²-2)