Oblicz pole trapezu równoramiennego ABCD, którego przekątna BD wynosi 20 cm, ∢ ADB równy jest 90 stopni, a wysokość 12 cm. Z góry dzięki.

Odpowiedź :

http://w481.wrzuta.pl/obraz/2HLWWKyojji/trapez ← rysunek

|CF| = |DE| = 12cm
|DB| = 20cm
|AE| = |FB| = z
|EB| = y
|EF| = |DC| = b
|AD| = |CB| = x


z twierdzenia Pitagorasa, z trójkąta DEB:
12² + y² = 20²
144 + y² = 400
y² = 256
y = 16

z twierdzenia Pitagorasa, z trójkąta DEA:
z² + 12² = x²
z² + 144 = x²

z twierdzenia Pitagorasa, z trójkąta DAB:
20² + x² = (16+z)²
400 + x² = 256 + 32z + z²
teraz pod x² podstawiamy: z² + 144 (wyznaczone z trójkąta DEA), więc:
400 + z² + 144 = 256 + 32z + z²
544 + z² - z² - 256 = 32z
288 = 32z
z = 9

b = y - z = 16 - 9 = 7
|AB| = z + b + z = 9 + 7 + 9 = 25

Pole:
[(7 + 25) ÷ 2] × 12 = 32 ÷ 2 × 12 = 16 × 12 = 192 (cm²)