sprawdz które z podanych zdań są tautologiami
a) [(pΛq)=>r]<=>[p=>(q=>r)]
b) ~[pV(~q)]<=>[~(p)Λq]
prosze o szybką odpowie


Odpowiedź :

a) [(p Λ q) => r] <=> [p => (q => r)]
~{~[(p Λ q) => r]} <=> ~{~[p => (q => r)]}
~[(p Λ q) Λ ~r] <=> ~[p Λ ~(q => r)]
~[(p Λ q) Λ ~r] <=> ~[p Λ q Λ ~r)]
~[p Λ q Λ ~r] <=> ~[p Λ q Λ ~r)]
to tautologia

b) ~[p V (~q)] <=> [~(p) Λ q]
[~p Λ ~(~q)] <=> [~(p) Λ q]
[~p Λ q] <=> [~(p) Λ q]
to tautologia
a) jest to tautologia

trzeba poprostu zrobic tabelke, jesli w ostatniej kollumnie wyjda same jedynki to jest to tautologia, a wiec:

p..q...r..p^q....(p^q)=>r.....q=>r....p=>(q=>r)...[(p^q)=>r] <=> [ p=> (q=>r)]
1...1..1....1..........1...........1.........1..........................1
1...1..0....1..........0...........0.........0..........................1
1...0..1....0..........1...........1.........1..........................1
0...1..1....0..........1...........1.........1..........................1
0...0..0....0..........1...........1.........1..........................1
0...0..1....0..........1...........1.........1..........................1
0...1..0....0..........1...........0.........1..........................1
1...0..0....0..........1...........1.........1.........................1

jest to tautologia

b) ten przykład nie jst tautologia bo na koncu w tabelce wyszły same zera, a wiec:

p...q...~p...~q....pv(~q)....~[pv(~q)].....~p^q..........~[pv(~q)] <=> [(~p)^ q]
1...1....0.....0.....1..............0.............0....................0
0...0....1.....1.....1..............0.............0....................0
1...0....0.....1.....1..............0.............0....................0
0...1....1.....0.....0..............1.............1....................0

czyli to nie jest tautologia :)

mam nadzieje ze to jest zrozumiałe, wydaje mis ie ze jest dobrze :/ posłużyłam sie metoda zero-jedynkowa :)

Viz Inne Pytanie