Odpowiedź :
oznaczmy ramiona przez x
wówczas Ob=2x+n+20+2n+4=3n+34
stąd 2x=10
x=5
rysujemy wysokość. ponieważ trapez jest równoramienny to odcinek od wysokości do kata ostrego wynosci: jedna podstawa minus druga dzielone przez dwa. ten odcinek wychodzi zatem równy 5 (jak podstawimy n=6).
Wykorzystujemy cosinusa: cosα=5/5=1.Ale stąd wychodzi, że nie ma takiego kata ostrego :/ więc coś chyba nie tak z tymi danymi
wówczas Ob=2x+n+20+2n+4=3n+34
stąd 2x=10
x=5
rysujemy wysokość. ponieważ trapez jest równoramienny to odcinek od wysokości do kata ostrego wynosci: jedna podstawa minus druga dzielone przez dwa. ten odcinek wychodzi zatem równy 5 (jak podstawimy n=6).
Wykorzystujemy cosinusa: cosα=5/5=1.Ale stąd wychodzi, że nie ma takiego kata ostrego :/ więc coś chyba nie tak z tymi danymi
a=2n+4=16
b=n+20=26
ob=3n+34=52
c-ramie trapezu
α-kat ostry
x-odcinek od kąta ostrego do wysokosci
n=6
ob=2*c+a+b
52=2*c+16+26
52=2*c+42
2*c=10
c=5
16+2x=26 /:2
8+x=13
x=5
cosα=x/c
cosα=5/5
cosα=1 /?
b=n+20=26
ob=3n+34=52
c-ramie trapezu
α-kat ostry
x-odcinek od kąta ostrego do wysokosci
n=6
ob=2*c+a+b
52=2*c+16+26
52=2*c+42
2*c=10
c=5
16+2x=26 /:2
8+x=13
x=5
cosα=x/c
cosα=5/5
cosα=1 /?
NARYSUJ ŁADNY ŚREDNIEJ WIELKOŚCI TRAPEZ RÓWNORAMIENNY
Podstaw sobie za n, 6 i oblicz podstawy oraz obwód
podstawa A=2n+4=2*6+4 = 16
podstawa B=n+20=6+20 = 26
obwód = 3n+34=3*6+34 = 52
Potem musisz wiedzieć ile mają ramiona (kąt ostry znajduje się między podstawą a ramieniem)
a) wiesz że na obwód trapezu skladaja sie dwa ramiona, podstawa dolna i gorna
b) wiesz że trapez jest równoramienny wiec ma dwa rowne ramiona
Możesz zapisać:
52(obwód)=16(podstA)+26(podstB)+2*ramie
52-16-26=2*ramie
2*ramie=10 // dzielimy przez 2
ramie=5
Masz ramię :) teraz musisz obliczyć pewien odcinek.
odcinek ten, to "kawałek" dłuższej podstawy "leżący" pod ramieniem.
wzór (tylko dla trapezu równoramiennego) :
(dłuższa - krótsza )/2 = (26-16)/2=5
cosL=5/5=1 czyli L=0 stopni
Zadanie podchwytliwe bo wychodzi że kąt = 0 stopni, a wiec tak naprawde trapez jest zupelnie splaszczony
Podstaw sobie za n, 6 i oblicz podstawy oraz obwód
podstawa A=2n+4=2*6+4 = 16
podstawa B=n+20=6+20 = 26
obwód = 3n+34=3*6+34 = 52
Potem musisz wiedzieć ile mają ramiona (kąt ostry znajduje się między podstawą a ramieniem)
a) wiesz że na obwód trapezu skladaja sie dwa ramiona, podstawa dolna i gorna
b) wiesz że trapez jest równoramienny wiec ma dwa rowne ramiona
Możesz zapisać:
52(obwód)=16(podstA)+26(podstB)+2*ramie
52-16-26=2*ramie
2*ramie=10 // dzielimy przez 2
ramie=5
Masz ramię :) teraz musisz obliczyć pewien odcinek.
odcinek ten, to "kawałek" dłuższej podstawy "leżący" pod ramieniem.
wzór (tylko dla trapezu równoramiennego) :
(dłuższa - krótsza )/2 = (26-16)/2=5
cosL=5/5=1 czyli L=0 stopni
Zadanie podchwytliwe bo wychodzi że kąt = 0 stopni, a wiec tak naprawde trapez jest zupelnie splaszczony