Odpowiedź :
Boki trójkąta równobocznego wydłużono o 57%. O ile wzrosło pole tego trójkąta ?
a- bok trójkąta
P¹=a²√3/4 - wzór na pole trójkąta równobocznego
a+57%a=a+0,57a=1,57a
1,57a-bok nowego trójkąta
P=(1,57a)²∛3/4
P=1,57²a²√3/4
P₂=2,4649a²√3/4
O ile wzrosło pole tego trójkąta ?
Wystarczy odjąc P²-P₁
P²-P₁=P₂= 2,4649a²√3/4 - 1a²√3/4= 1,4649a²√3/4 ≈ 1,46a²√3/4
Wzrosło o 146%
a- bok trójkąta
P¹=a²√3/4 - wzór na pole trójkąta równobocznego
a+57%a=a+0,57a=1,57a
1,57a-bok nowego trójkąta
P=(1,57a)²∛3/4
P=1,57²a²√3/4
P₂=2,4649a²√3/4
O ile wzrosło pole tego trójkąta ?
Wystarczy odjąc P²-P₁
P²-P₁=P₂= 2,4649a²√3/4 - 1a²√3/4= 1,4649a²√3/4 ≈ 1,46a²√3/4
Wzrosło o 146%
Wzór na pole trójkąta równobocznego wygląda następująco:
P₁ = ¼ * a² * √3
Jeżeli boki zostały wydłużone o 57% to a równa się teraz 1,57a i pole wynosi:
P₂ = ¼ * (1,57a)² * √3 = ¼ * 2,4649a² * √3
P₂ - P₁ = ¼ * 2,4649a² * √3 - ¼ * a² * √3 =¼ * a²√3(2,4649 -1) = ¼ * a²√3 * 1,4649
Ukłądasz proporcję:
¼ * a² * √3 - 100%
¼ * a²√3 * 1,4649 - x%
x=146%
ODP. Pole wzrosło o Wzrosło o 146%.
P₁ = ¼ * a² * √3
Jeżeli boki zostały wydłużone o 57% to a równa się teraz 1,57a i pole wynosi:
P₂ = ¼ * (1,57a)² * √3 = ¼ * 2,4649a² * √3
P₂ - P₁ = ¼ * 2,4649a² * √3 - ¼ * a² * √3 =¼ * a²√3(2,4649 -1) = ¼ * a²√3 * 1,4649
Ukłądasz proporcję:
¼ * a² * √3 - 100%
¼ * a²√3 * 1,4649 - x%
x=146%
ODP. Pole wzrosło o Wzrosło o 146%.