Odpowiedź :
Cześć!
Szczegółowe wyjaśnienie:
Wykonaj działania na potęgach.
a)
[tex] \frac{9 {}^{3} \cdot4 {}^{4} }{6 {}^{10} } = \frac{4 \cdot36 {}^{3} }{6 {}^{10} } = \frac{4 \cdot6 {}^{6} }{6 {}^{10} } = \frac{4}{6 {}^{4} } = \\ \frac{4}{1296} : | 4 \\ \frac{1}{324} [/tex]
b)
[tex]3 {}^{4} + 3 {}^{5} = (1 + 3) \cdot3 {}^{4} = 4 \cdot81 = 324[/tex]
[tex]a)\ \ \dfrac{9^3\cdot4^4}{6^1^0}=\dfrac{9^3\cdot4^3\cdot4^1}{6^1^0}=\dfrac{(9\cdot4)^3\cdot4}{6^1^0}=\dfrac{36^3\cdot4}{6^1^0}=\dfrac{(6^2)^3\cdot4}{6^1^0}=\dfrac{\not6^6\cdot4}{6^1^0}=\\\\\\=\dfrac{4}{6^{10-6}}=\dfrac{4}{6^4}=\dfrac{4}{1296}=\dfrac{1}{324}[/tex]
[tex]b)\ \ 3^4+3^5=3^4+3^1\cdot3^4=3^4+3\cdot3^4=(1+3)\cdot3^4=4\cdot3^4=4\cdot81=324\\\\Wykorzystano\ \ wlasno\'sci\ \ poteg\\\\a^{m+n}=a^m\cdot a^n\\\\(a^m)^n=a^{m\cdot n}[/tex]