Zad 12) uporządkuj liczby rosnąco. Daje njjjj

Zad 12 Uporządkuj Liczby Rosnąco Daje Njjjj class=

Odpowiedź :

Definicja wartości bezwzględnej

Wartością bezwzględną liczby a nazywamy:

|a| = a   dla a ≥ 0

|a| = -a  dla a < 0

Wartość bezwzględna liczby dodatniej jest równa tej liczbie:

np. |3| = 3

Wartość bezwzględna liczby ujemnej jest równa jej liczbie przeciwnej:

np. |-5| = 5

Z własności potęg:

Dla dowolnej liczby a różnej od zera i dowolnej liczby całkowitej n  potęgą a⁻ⁿ nazywamy odwrotność potęgi aⁿ.

[tex]a^{-n} = \frac{1}{a^{n}} \ \ \ \ \ \ \ \ \ \ \ \ a \neq 0, \ n \in N\\\\(\frac{a}{b})^{-n} = (\frac{b}{a})^{n} \ \ \ \ \ \ \ a \neq 0, \ b \neq 0[/tex]

Pamiętajmy

Potęgując liczbę ujemną otrzymujemy wyniki:

. dodatni, gdy wykładnik potęgi jest parzysty

. ujemny, gdy wykładnik potęgi jest nieparzysty.

Pierwiastek kwadratowy

[tex]\sqrt{a} = b \ \Leftrightarrow \ b^{2} = a \ \ \ \ \ \ \ \ a \geq 0, \ b \geq 0[/tex]

Pierwiastkiem kwadratowym z nieujemnej liczby a nazywamy taką niejemną liczbę b, która podniesiona do kwadratu daje liczbę a.

[tex](\sqrt{a})^{2} = a \ \ \ \ \ \ \ \ \ a\geq 0[/tex]

12.

[tex]|(-0,1)^{-5}| = |(-\frac{1}{10})^{-5}| = |(-10)^{5}| = 10^{5}\\\\(-\frac{1}{2})^{-2} = (-2)^{2} = \\\\(2\frac{2}{3})^{-1} = (\frac{2\cdot3+2}{3})^{-1} = (\frac{8}{3})^{-1} = \frac{3}{8} =\frac{3\cdot125}{8\cdot125} =\frac{375}{1000} = 0,375\\\\5^{-3}= (\frac{1}{5})^{3} = \frac{1}{125} = \frac{1\cdot8}{125\cdot8} = \frac{8}{1000} = 0,008\\\\|(-100)^{-2}| = |(-\frac{1}{100})^{2}| =\frac{1}{10000} = 0,0001[/tex]

[tex](\sqrt{3})^{-1} = \frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}\approx0,58 \\\\(-\frac{1}{\sqrt{5}})^{-2}=(-\sqrt{5})^{2} = 5[/tex]

[tex]0,0001 \ < \ 0,008 \ < \ 0,375 < \ 0,58 \ \ < \ \ 4 \ \ \ \ < \ \ \ 5 \ \ < \ \ 10^{5}\\\\\underline{|(-100)^{-2}| < 5^{-3} < (2\frac{2}{3})^{-1} < (\sqrt{3})^{-1} < (-\frac{1}{2})^{-2} < (-\frac{1}{\sqrt{5}})^{-2} < 10^{5}}[/tex]