Odpowiedź:
[tex]I.~~P\\\\II.~~P[/tex]
Szczegółowe wyjaśnienie:
Dane mamy liczby:
Pamiętamy:
Korzystamy ze wzorów:
Obliczamy:
[tex]I.\\\\x-y=?~~\land~~x=\sqrt{2} -1~~\land~~y=1+\sqrt{2} \\\\x-y=\sqrt{2} -1-( 1+\sqrt{2})=\sqrt{2} -1- 1-\sqrt{2}=-2\\\\x-y=-2~~\Rightarrow~~-2\in \mathbb{ Z}~~\Rightarrow~~Odp:\boxed{P}[/tex]
[tex]II.\\\\x\cdot y=?~~\land~~x=\sqrt{2} -1~~\land~~y=1+\sqrt{2} \\\\x\cdot y=(\sqrt{2} -1)\cdot ( 1+\sqrt{2})=\sqrt{2} +2-1-\sqrt{2} =1\\\\lub\\\\x\cdot y=(\sqrt{2} -1)\cdot ( \sqrt{2}+1)=(\sqrt{2} )^{2} -1^{2} =2-1=1\\\\x\cdot y=1~~\Rightarrow~~1\in \mathbb{ N}~~\Rightarrow~~Odp: \boxed{P}[/tex]