Zeszyt i 2 długopisy kosztują 21 zł.Dwa zeszyty i 2 długopisy kosztują 24 zł.Ile kosztuje zeszyt ,a ile długopis?​

Odpowiedź :

Zadanie tekstowe.

Zeszyt i 2 długopisy kosztują 21 zł. Dwa zeszyty i 2 długopisy kosztują 24 zł. Ile kosztuje zeszyt ,a ile długopis?​

Myśląc logicznie. Jeżeli od kosztów zakupu dwóch zeszytów i dwóch długopisów odejmiemy koszty zakupów jednego długopisu i dwóch zeszytów, to otrzymamy cenę jednego zeszytu.

24zł - 21zł = 3zł

Teraz wystarczy od 21zł odjąć cenę długopisu i otrzymany wynik podzielić przez 2 aby otrzymać cenę zeszytu.

21zł - 3zł = 18zl

18zł : 2 = 9zł

Odp: Zeszyt kosztuje 3zł, a długopis 9zł.

Odpowiedź:

Zeszyt kosztuje 3 zł, a długopis 9 zł.

Szczegółowe wyjaśnienie:

x - cena zeszytu

y - cena długopisu

Na podstawie danych w treści zadania rozwiązuję układ dwóch równań o dwóch niewiadomych:

Rozwiązuję metodą podstawiania.

Jak się rozwiązuję układy równań metodą podstawiania:

1. Z dowolnego równania wyznaczam jedną niewiadomą.

2. Tak wyznaczoną wartość niewiadomej podstawiam do drugiego równania (otrzymuję równanie z jedną niewiadomą).

3. Rozwiązuję równanie z jedną niewiadomą.

4. Podaję rozwiązanie układu.

x + 2y = 21

2x + 2y = 24    |:2

x + 2y = 21

x + y = 12    ⇒    y = 12 - x

x + 2(12 - x) = 21

x + 24 - 2x = 21

-x = 21 - 24

-x = -3    |:(-1)

x = 3 zł - cena zeszytu

y = 12 - x

y = 12 - 3

y = 9 zł - cena długopisu