[tex]\iint\limits_P {\frac{2x^3}{y^2}} dxdy=\int\limits^3_2\left(\int\limits^2_{-1} {\frac{2x^3}{y^2}} dx\right)dy=\int\limits^3_2\left[ {\frac{2*\frac{x^4}{4}}{y^2}} \right]^2_{-1}dy=\int\limits^3_2\left[ {\frac{x^4}{2y^2}} \right]^2_{-1}dy=\\=\int\limits^3_2\left( {\frac{16}{2y^2}-\frac{1}{2y^2}} \right)dy=\int\limits^3_2 {\frac{15}{2y^2}dy=\frac{15}{2}\int\limits^3_2 {\frac{1}{y^2}dy=\frac{15}{2} \left[-{\frac{1}{y}\right]^3_2=-\frac{15}{2} \left[{\frac{1}{y}\right]^3_2=[/tex]
[tex]=-\frac{15}{2}*(\frac{1}{3}-\frac{1}{2})=-\frac{15}{2}*(\frac{2}{6}-\frac{3}{6})=-\frac{15}{2}*(-\frac{1}{6})=\frac{5}{4}[/tex]