Promień kuli A jest równy 2√2. Promień kuli B jest równy √2. Ile razy pole kuli A jest większe od kuli pola B?

Odpowiedź :

Odpowiedź:

Pole kuli A jest 4 razy większe od pola kuli B.

Szczegółowe wyjaśnienie:

[tex]r_{A} = 2\sqrt{2}\\r_{B} = \sqrt{2}\\[/tex]

Wzór na pole kuli:

P=4πr2

[tex]P_{A} = 4\pi r^{2}=4\pi r_{A}^{2}=4\pi\cdot(2\sqrt{2})^{2}=4\pi\cdot4\cdot2 = 32\pi\\\\P_{B} = 4\pi R_{B}^{2} = 4\pi \cdot(\sqrt{2})^{2} =4\pi \cdot2 = 8\pi\\\\\frac{P_{A}}{P_{B}} = \frac{32\pi}{8\pi} = 4\\\\\boxed{P_{A} = 4P_{B}}[/tex]