Odpowiedź :
Wzór
[tex]h = \frac{a \sqrt{3} }{2} [/tex]
a)
[tex]h = \frac{7 \sqrt{3} }{2} = 3.5 \sqrt{3} [/tex]
b)
[tex]h = \frac{2.4 \sqrt{3} }{2} = 1.2 \sqrt{3} [/tex]
c)
[tex]h = \frac{ \frac{1}{3} \sqrt{3} }{2} = \frac{1}{3} \sqrt{3} \times \frac{1}{2} = \frac{1}{6} \sqrt{3} [/tex]
d)
[tex]h = \frac{3.5 \sqrt{3} }{2} = 1.75 \sqrt{3} [/tex]
e)
[tex]h = \frac{6 \sqrt{3} }{2} = 3 \sqrt{3} [/tex]
f)
[tex]h = \frac{1 \frac{2}{7} \sqrt{3} }{2} = \frac{ \frac{9}{7} \sqrt{3} }{2} = \frac{9}{7} \sqrt{3} \times \frac{1}{2} = \frac{9}{14} \sqrt{3} [/tex]
Szczegółowe wyjaśnienie:
a) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex], gdzie a = 7
P = [tex]\frac{7^{2}\sqrt{3} }{4}[/tex] = [tex]\frac{49\sqrt{3} }{4}[/tex] = [tex]12\frac{1}{4} \sqrt{3}[/tex]
b) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex], gdzie a = [tex]2\frac{2}{5}[/tex]
P = [tex]\frac{2\frac{2}{5} ^{2}\sqrt{3} }{4}[/tex] = [tex]\frac{36\sqrt{3} }{25}[/tex] = [tex]1\frac{11}{25} \sqrt{3}[/tex]
c) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex], gdzie a = [tex]\frac{1}{3}[/tex]
P = [tex]\frac{\frac{1}{3} ^{2}\sqrt{3} }{4}[/tex] = [tex]\frac{\sqrt{3} }{36}[/tex]
d) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex], gdzie a = 3,5
P = [tex]\frac{3,5^{2}\sqrt{3} }{4}[/tex] = [tex]\frac{49\sqrt{3} }{16}[/tex] = [tex]3\frac{1}{16} \sqrt{3}[/tex]
e) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex], gdzie a = 6
P =[tex]\frac{6^{2} \sqrt{3} }{4}[/tex] = [tex]9\sqrt{3}[/tex]
f) Wzór: P = [tex]\frac{a^{2 }\sqrt{3} }{4}[/tex] , gdzie a = [tex]1\frac{2}{7}[/tex]
P = [tex]\frac{1\frac{2}{7} ^{2} \sqrt{3} }{4}[/tex] = [tex]\frac{81\sqrt{3} }{196}[/tex]
W razie pytań, śmiało pisz :)
Przepraszam, tutaj obliczyłem pole.