Podstawa trójkata równoramiennego jest cztery razy dłuższa od wysokosci opuszczonej na te podstawe. Pole tego trójkąta jest równe 36. Oblicz obwód tego trojkata oraz sinus kąta, który ramie tworzy z podstawą.

Odpowiedź :

Odpowiedź:

h - wysokość trójkąta

a - podstawa trójkąta = 4h

P- pole trójkąta = 1/2 * a * h = 1/2 * 4h * h = 2h²

2h²=36 [j²]

h² = 36 : 2 = 18 [j²]

h = √18 = √(9 * 2) = 3√2 [j]

a = 4h = 4 * 3√2 = 12√2 [j]

b - ramię trójkąta = ?

b² = (a/2)² + h² = (12√2/2)²+ (3√2)²= (6√2)² + 9 * 2 = 36 * 2 + 18 =

= 72 + 18 = 90 [j²]

b = √90 = √(9* 10)= 3√10[j]

o - obwód trójkąta = a+2 * b = 12√2 + 3√10 = 3(4√2 + √10) [j]

sinα = h/b = 3√2/3(4√2+ √10)= √2/(4√2 + √10)

Szczegółowe wyjaśnienie:

[j] - znaczy właściwa jednostka

[tex]a = 4 h\\\\P = \frac{1}{2}ah = 36\\\\\frac{1}{2}\cdot4h\cdot h = 36\\\\2h^{2} = 36 \ \ |:2\\\\h^{2} = 18\\\\h = \sqrt{18} = \sqrt{9\cdot 2}\\\\\underline{h = 3\sqrt{2}}\\\\a = 4h = 4\cdot3\sqrt{2}\\\\\underline{a = 12\sqrt{2}}\\\\b^{2} = (\frac{a}{2})^{2} + h^{2}\\\\b^{2} = (\frac{12\sqrt{2}}{2})^{2} + (3\sqrt{2})^{2}\\\\b^{2} = 36\cdot2 + 9\cdot2 =72+18 = 90\\\\b = \sqrt{90} = \sqrt{9\cdot10}\\\\\underline{b = 3\sqrt{10}}[/tex]

[tex]Ob = a + 2b = 12\sqrt{2}+2\cdot3\sqrt{10} = 12\sqrt{2}+6\sqrt{10}\\\\\boxed{Ob = 6(2\sqrt{2}+\sqrt{10}) \ \ [j]}[/tex]

[tex]sin\alpha = \frac{h}{b}\\\\sin\alpha = \frac{3\sqrt{2}}{3\sqrt{10}} = \frac{\sqrt{2}}{\sqrt{10}} = \frac{\sqrt{2}}{\sqrt{10}}\cdot\frac{\sqrt{10}}{\sqrt{10}}=\frac{\sqrt{2\cdot10}}{10}\\\\\boxed{sin\alpha = \frac{\sqrt{20}}{10}}[/tex]