Odpowiedź :
Odpowiedź:
9 x³ + 18 x² - 4 x - 8 = 0
9 x²*( x + 2) - 4*( x + 2) = 0
(x + 2)*( 9 x² - 4) = 0
(x + 2)*( 3 x - 2)*(3 x + 2) = 0
x + 2 = 0 lub 3 x - 2 = 0 lub 3 x + 2 = 0
x = - 2 lub 3 x = 2 lub 3 x = - 2
x = - 2 lub x = [tex]\frac{2}{3}[/tex] lub x = - [tex]\frac{2}{3}[/tex]
===========================================
Szczegółowe wyjaśnienie:
[tex]9x^{3}+18x^{2}-4x-8 = 0\\\\9x^{2}(x+2)-4(x+2) = 0\\\\(x+2)(9x^{2}-4) = 0[/tex]
Korzystamy ze wzoru skróconego mnożenia: (a²- b²) = (a + b)(a - b)
[tex](x +2)((3x)^{2}-2^{2}) = 0\\\\(x+2)(3x+2)(3x-2) = 0\\\\x+2 = 0 \ \vee \ 3x+2 = 0 \ \vee \ 3x-2 = 0\\\\x = -2 \ \vee \ 3x = -2 \ \vee \ 3x = 2\\\\x = -2 \ \vee \ x = -\frac{2}{3} \ \vee \ x = \frac{2}{3}\\\\\boxed{x \in \{-2, -\frac{2}{3}, \frac{2}{3}\}}[/tex]