Odpowiedź:
[tex] {2}^{3 \sqrt{5} } \times {8}^{ - \sqrt{5} } = {2}^{3 \sqrt{5} } \times ( {2}^{3} { ) }^{ - \sqrt{5} } = {2}^{3 \sqrt{5} } \times {2}^{ - 3 \sqrt{5} } = {2}^{0} = 1[/tex]
[tex] {6}^{ \sqrt{3} } \times {3}^{1 - \sqrt{3} } \times {2}^{ - \sqrt{3} } = (2 \times 3 {)}^{ \sqrt{3} } \times {3}^{1 - \sqrt{3} } \times {2}^{ - \sqrt{3} } = {2}^{ \sqrt{3} } \times {3}^{ \sqrt{3} } \times {3}^{1 - \sqrt{3} } \times {2}^{ - \sqrt{3} } = {2}^{0} \times {3}^{1} = 1 \times 3 = 3[/tex]