Korzystamy ze wzoru:
[tex](x^n)' =n*x^{n-1}[/tex]
[tex](\sqrt[3]{x} )'=(x^{\frac{1}{3} } )'=\frac{1}{3} *x^{\frac{1}{3}-1 }=\frac13 x^{-\frac23}=\frac13\frac{1}{\sqrt[3]{x^2} } =\frac{1}{3\sqrt[3]{x^2} }[/tex]
[tex](\sqrt[5]{x} )'=(x^{\frac{1}{5} })' =\frac15*x^{\frac15-1} =\frac15*x^{-\frac45} =\frac{1}{5\sqrt[5]{x^4} }[/tex]