Odpowiedź:
[tex]\boxed{V = \frac{256}{3}\pi \ cm^{3}}\\\\\\\boxed{P = 64\pi \ cm^{2}}[/tex]
Szczegółowe wyjaśnienie:
[tex]r = 4 \ cm\\\\V = \frac{4}{3}\pi r^{3}=\frac{4}{3}\pi\cdot(4 \ cm)^{3} = \frac{4}{3}\pi\cdot 64 \ cm^{3} = \frac{256}{3}\pi \ cm^{3}\\\\P = 4\pi r^{2} = 4\pi\cdot(4 \ cm)^{2} = 4\pi \cdot16 \ cm^{2} = 64\pi \ cm^{2}[/tex]