Odpowiedź:
a)
[tex] {x}^{2} + 3x = 2x + 6 \: \: \:\\ {2}^{2} + 3 \times 2 = 2 \times 2 + 6 \\ 10 = 10 \\ P = L[/tex]
b)
[tex] {x}^{2} - 4x = 6 - x \\ ( - 1 {)}^{2} - 4 \times ( - 1) = 6 - ( - 1) \\5 = 7 \\ P \ne \: L[/tex]
c)
[tex]2x - 13 = {x}^{2} + 5 \\ 2 \times ( - 3) - 13 = ( - 3 {)}^{2} + 5 \\ - 19 = 14 \\ P \ne \: L[/tex]
d)
[tex] {x}^{3} + 4 {x}^{2} = x(x + 2) \\ {1}^{3} + 4 \times {1}^{2} = 1(1 + 2) \\ 5 = 3 \\ P \ne \: L[/tex]
e)
[tex] \frac{2}{ {x}^{2} + 2} = \frac{x}{6} \\ \frac{2}{ {2}^{2} + 2} = \frac{2}{6} \\ \frac{1}{3} = \frac{1}{3} \\ P = L[/tex]
f)
[tex] {3}^{x} - 2 = (x + 2 {)}^{2} \\ {3}^{3} - 2 = (3 + 2 {)}^{2} \\ 25 = 25 \\ P =L[/tex]