Odpowiedź :
1.
[tex]Dane:\\F_{d} = 12\cdot10^{3} \ N\\v = 70\frac{km}{h} = 70:3,6 \ \frac{m}{s} =19,(4)\frac{m}{s}\approx19,44\frac{m}{s}\\R = 50 \ m\\Szukane;\\m = ?\\\\Rozwiazanie\\\\F_{d} = \frac{mv^{2}}{R} \ \ \ |\cdot R\\\\mv^{2} = F_{d}\cdot R\ \ |:v^{2}\\\\m = \frac{F_{d}\cdot R}{v^{2}}\\\\m = \frac{12\cdot10^{3} \ N\cdot50 \ m}{(19,4\frac{m}{s})^{2}}=\frac{600 \ kg\cdot\frac{m^{2}}{s^{2}}}{376,36\frac{m^{2}}{kg^{2}}}\\\\\boxed{m\approx1,6\cdot10^{3} \ kg}[/tex]
2.
[tex]Dane:\\m = 60 \ kg\\g = 10\frac{m}{s^{2}} = 10\frac{N}{kg}\\Szukane:\\F_{g} = ?\\\\Rozwiazanie\\\\F_{g} = m\cdot g\\\\F_{g} = 60 \ kg\cdot10\frac{N}{kg}\\\\\boxed{F_{g} = 600 \ N}[/tex]