Odpowiedź :
Odpowiedź:
a₁ = 2
a₂ = 4
a₃ = 8
q = a₃/a₂= a₂/a₁
q = 8/4= 4/2 = 2
a₄ = a₃q = 8 * 2 = 16
a₅ = a₄q = 16 * 2 = 32
S₅ = a₁ + a₂ + a₃ + a₄ + a₅ = 2 + 4 + 8 + 16 +32 = 62
lub
S₅ = a₁(1 - q⁵)/(1 - q) = 2(1 - 2⁵)/(1 - 2) = 2(1 - 32)/(- 1)= 2 * (-31)/(- 1)=
= - 62/(-1)= 62/1 = 62
Odpowiedź:
S₅ = 62
Szczegółowe wyjaśnienie:
[tex]a_1 = 2\\a_2 = 4\\a_3 = 8\\n = 5\\S_{5} = ?\\\\q = \frac{a_2}{a_1} = \frac{4}{2} = 2\\\\\\S_{n} = a_1\cdot\frac{1-q^{n}}{1-q}\\\\S_{5} = 2\cdot\frac{1-2^{5}}{1-2} = 2\cdot\frac{1-32}{-1} =2\cdot\frac{-31}{-1}=2\cdot31 =\boxed{ 62}[/tex]