Dany jest ciąg an = 9/5+ 3/5n.Oblicz sumęa50 +a51 +a52 +⋯+a90.

Odpowiedź :

Odpowiedź:

an = 9/5 + 3/5n

a₁ = 9/5 + 3/5 * 1 = 9/5 + 3/5 = 12/5

a₂ = 9/5 + 3/5 * 2 = 9/5 + 6/5 = 15/5

a₃ = 9/5 + 3/5 * 3 = 9/5 + 9/5 = 18/5

a₃ - a₂ = a₂ - a₁

18/5 - 15/5 = 15/5 - 12/5

3/5 = 3/5 , więc jest to ciąg arytmetyczny : a₁ = 12/5 , r = 3/5

a₄₉ = 9/5 + 3/5 * 49 = 9/5 + 147/5 = 9/5 + 29,4 =  1,8 + 29,4 = 31,2

a₉₀ = 9/5 + 3/5 * 90 = 9/5 + 270/5 = 1 4/5 + 54 = 55 4/5 = 55,8

S₄₉ = (a₁ + a₄₉) * 50/2 = (12/5 + 31,2) * 25 = (2 2/5 + 31,2) * 25 =

= (2,4 + 31,2) * 25 = 33,6 * 25 = 840

S₉₀ = (a₁ + a₉₀) * 90/2 = (12/5 + 54 4/5) * 45 = (2,4 + 55,8) * 45 =

= 58,2 * 45= 2619

S₉₀ - S₄₉ = 2619 - 840= 1779

Odpowiedź:

a1= 9/5+3/5= 12/5         a2=9/5+6/5=15/5                   r= 15/5-12/5=3/5

 a49=a1+48r= 12/5+ 48*3/5= 156/5

a50= a49+r=156/5+3/5= 159/5

a90= a50+ 40r= 159/5+40*3/5= 279/5

S49= (a1+a49)/2    *49=( 12/5+ 156/5)   /2    *49= 84/5*49=4116/5

S90= ( a1+a90)/2    *90= ( 12/5+ 279/5)    *45=291/5*45=13095/5

szukana suma = S90-S49= 13095/5-4116/5=8979/5

Szczegółowe wyjaśnienie: