Odpowiedź :
a]
[tex]a_n=n^2-4n+2\\\\a_1=1^2-4\cdot1+2=1-4+2=-3+2=\boxed{-1}\\\\a_4=4^2-4\cdot4+2=16-16+2=0+2=\boxed2\\\\a_8=8^2-4\cdot8+2=64-32+2=32+2=\boxed{34}[/tex]
b]
[tex]a_n=(n-1)(n+2)(n-8)\\\\a_1=(1-1)\cdot(1+2)\cdot(1-8)=0\cdot3\cdot(-7)=\boxed0\\\\a_4=(4-1)\cdot(4+2)\cdot(4-8)=3\cdot6\cdot(-4)=\boxed{-72}\\\\a_8=(8-1)\cdot(8+2)\cdot(8-8)=7\cdot10\cdot0=\boxed0[/tex]
Odpowiedź:
Szczegółowe wyjaśnienie:
a)
an = n² - 4n + 2; a1 = - 1, a4 = 2, a8 = 34 .
b)
an = (n - 1)(n + 2)(n - 8); a1 = 0, a4 = - 72, a8 = 0.