Odpowiedź :
Odpowiedź:
[tex]a)\ \ (2\sqrt[3]{5})^3=2^3\cdot(\sqrt[3]{5})^3=8\cdot5=40\\\\\\b)\ \ (3\sqrt[3]{2})^3=3^3\cdot(\sqrt[3]{2})^3=27\cdot2=54\\\\\\c)\ \ \left(\dfrac{\sqrt[3]{6}}{3}\right)^3=\dfrac{(\sqrt[3]{6})^3}{3^3}=\dfrac{6}{27}=\dfrac{2}{9}\\\\\\d)\ \ \left(\dfrac{\sqrt[3]{4}}{2}\right)^3=\dfrac{(\sqrt[3]{4})^3}{2^3}=\dfrac{4}{8}=\dfrac{1}{2}\\\\\\e)\ \ \left(\dfrac{3}{\sqrt[3]{15}}\right)^3=\dfrac{3^3}{(\sqrt[3]{15})^3}=\dfrac{27}{15}=1\dfrac{12}{15}=1\dfrac{4}{5}[/tex]
[tex]f)\ \ \left(\dfrac{1}{2\sqrt[3]{5}}\right)^3=\dfrac{1^3}{2^3\cdot(\sqrt[3]{5})^3}=\dfrac{1}{8\cdot5}=\dfrac{1}{40}[/tex]