Oblicz pole powierzchni ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 8 cm i krawędzi bocznej 5 cm ​

Odpowiedź :

Pole podstawy

[tex] \frac{ {8}^{2} \sqrt{3} }{4} = \frac{64 \sqrt{3} }{4} = 16 \sqrt{3} {cm}^{2} [/tex]

Wysokość ściany bocznej

[tex] {4}^{2} + {x}^{2} = {5}^{2} \\ 16 + {x}^{2} = 25 \\ {x}^{2} = 9 \\ x = \sqrt{9} \\ x = 3cm[/tex]

Pole ściany bocznej

[tex] \frac{8 \times 3}{2} = \frac{24}{2} = 12 {cm}^{2} [/tex]

Pole całkowite

[tex]16 \sqrt{3} + 3 \times 12 = \underline{(16 \sqrt{3} + 36) {cm}^{2} }[/tex]