Odpowiedź :
Odpowiedź:
5log₁₎₄2 + log₄₋₁⁴√16 - log₂₋₂16 = 5log₁₎₄2 + log₁₎₄2 - log₁₎₄16 =
= log₁₎₄2⁵ + log₁₎₄2 - log₁₎₄16 = log₁₎₄32 + log₁₎₄2 - log₁₎₄16 =
= log₁₎₄32 * 2 - log₁₎₄16 = log₁₎₄64 - log₁₎₄16 = log₁₄64/16 = log₁₎₄4 = - 1
Odp: D
[tex]5log_{\frac{1}{4}}2+log_{4^{-1}}\sqrt[4]{16}}-log_{2^{-2}}16 = \\\\=log_{\frac{1}{4}}2^{5}+log_{\frac{1}{4}}2-log_{(\frac{1}{2})^{2}}16=\\\\=log_{\frac{1}{4}}32+log_{\frac{1}{4}}2 - log_{\frac{1}{4}}16=\\\\=log_{\frac{1}{4}}\frac{32\cdot2}{16} = log_{\frac{1}{4}}4 = log_{\frac{1}{4}}4^{-1} = -1\\\\\boxed{Odp. \ D}[/tex]
Wyjaśnienie:
[tex]log_{a}b +log_{a}c = log_{a}(b\cdot c)\\\\log_{a}b - log_{a}c = log_{a}(\frac{b}{c})[/tex]