Odpowiedź :
Odpowiedź:
a)
d₁ = 10 cm
d₂ = 4 cm
a - bok rombu = √[(d₁/2)²+ (d₂/2)²]= √(5² + 2²) cm = √(25 + 4) cm =
= √29cm
O - obwód = 4a = 4 * √29 cm = 4√29 cm
P - pole = 1/2 * d₁ * d₂ =1/2 * 10cm * 4 cm = 5 cm * 4 cm = 20 cm²
b)
d₁ = 4 cm
d₂ = 6 cm
a - bok rombu = √[(d₁/2)²+ (d₂/2)²]= √(2² + 3²) cm = √(4 + 9) cm =
= √13cm
O - obwód = 4a = 4 * √13 cm = 4√13 cm
P - pole = 1/2 * d₁ * d₂ =1/2 * 4 cm * 6 cm = 2 cm * 6 cm = 12cm²
c)
d₁ = 3 cm
d₂ = 4 cm
a - bok rombu = √[(d₁/2)²+ (d₂/2)²]= √(1,5² + 2²) cm = √(2,25 + 4) cm =
= √6,25 cm = 2,5 cm
O - obwód = 4a = 4 * 2,5 cm = 10cm
P - pole = 1/2 * d₁ * d₂ =1/2 * 3cm * 4 cm = 3 cm * 2 cm = 6 cm²
a)
Boki tego rombu
[tex] {5}^{2} + {2}^{2} = {x}^{2} \\ 25 + 4 = {x}^{2} \\ x = \sqrt{29}cm [/tex]
Pole
[tex] \frac{10 \times 4}{2} = 20 {cm}^{2} [/tex]
Obwód
[tex] \sqrt{29} \times 4 = 4 \sqrt{29} cm[/tex]
b)
Bok tego rombu
[tex] {2}^{2} + {3}^{2} = {x}^{2} \\ 4 + 9 = {x}^{2} \\ x = \sqrt{13} cm[/tex]
Pole
[tex] \frac{4 \times 6}{2} = 12 {cm}^{2} [/tex]
Obwód
[tex]4 \times \sqrt{13} = 4 \sqrt{13} cm[/tex]
c)
Bok tego rombu
[tex] {1.5}^{2} + {2}^{2} = {x}^{2} \\ 2.25 + 4 = {x}^{2} \\ x = \sqrt{6.25} = 2.5cm[/tex]
Pole
[tex] \frac{3 \times 4}{2} = 6 {cm}^{2} [/tex]
Obwód
[tex]4 \times 2.5 = 10cm[/tex]