podstawą graniastosłupa prawidłowego czworokątnego jest figura o boku długości 4 cm,a przekątna sciany bocznej ma długość 12 cm. Oblicz objętość i pole całkowite tego wielościanu.

Odpowiedź :

[tex]V = Pp \times H[/tex]

[tex]Pp = 4 \times 4 = 16 {cm}^{2} [/tex]

[tex] {4}^{2} + {h}^{2} = {12}^{2} \\ 16 + {h}^{2} = 144 \\ {h}^{2} = 128 \\ h = \sqrt{128} = \sqrt{64 \times 2} = 8 \sqrt{2} cm[/tex]

Zatem objętość

[tex]V = 16 {cm}^{2} \times 8 \sqrt{2} cm = 128 \sqrt{2} {cm}^{3} [/tex]

Pole powierzchni całkowitej

[tex]2 \times Pp + 4 \times Psb[/tex]

[tex]2 \times 16 {cm}^{2} + 4 \times (4 \times 8 \sqrt{2} ) = 32 {cm}^{2} + 4 \times 32 \sqrt{2} {cm}^{2} = \\ = \boxed {32 {cm}^{2} + 128 \sqrt{2} {cm}^{2}}[/tex]

Viz Inne Pytanie