Zad3.
Piłkę o masie 45dag upuszczono swobodnie z wysokości 0,1km. korzystajac z asady zachowania energi oblicz:
a) prędkość z jaką piłka uderzy w powierzchnię Ziemi
b) jej energię kinetyczną na wysokości 20m


Odpowiedź :

Odpowiedź:

Uderzy w ziemię z prędkością 44.3 m/s.

Energia kinetyczna na wysokości wynosiła 353J.

Wyjaśnienie:

a)

dane:

[tex]m = 45 dag = 0.45 kg[/tex] - masa piłki

[tex]h = 0.1km = 100m[/tex] - wysokość początkowa

szukane:

v = ?

energia na początku:

[tex]E_k = 0[/tex]

[tex]E_{pg} = mgh[/tex]

Energia na końcu:

[tex]E_{k2} = \frac{1}{2}mv^2[/tex]

[tex]E_{pg2} = 0[/tex]

Możemy przyrównać Energię przed i po:

[tex]E_k + E_{pg} = E_{k2} + E_{pg2}[/tex]

[tex]0 + mgh = \frac{1}{2}mv^2 + 0[/tex]

Z równania wyliczamy v:

[tex]mgh = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{2gh}[/tex]

i podstawiamy liczby:

[tex]v = \sqrt{2gh} = \sqrt{2*9.81*100} \approx \boxed{44.3 \frac{m}{s}}[/tex]

b)

dane:

h2 = 20m

szukane:

[tex]E_{k2} = ?[/tex]

Z zachowania energii:

[tex]E_k + E_{pg} = E_{k2} + E_{pg2}[/tex]

[tex]E_{k2} = E_k + E_{pg} - E_{pg2}[/tex] - energia kinetyczna na 20m

Podstawiamy nasze dane:

[tex]E_{k2} = 0 + mgh - mgh_2[/tex]

[tex]E_{k2} = 0.45*9.81*100 - 0.45*9.81*20=441.45 - 88.29=353J[/tex]