Wskaż 4 wyrazy ciągu an = log2 n , będące liczbami całkowitymi.

2 przy log w indexie dolnym


Odpowiedź :

Liczbami całkowitymi ciągu an będą wyrazy , których n wynosi :

[tex]n= 2^{m} ~~dla~~m\in C \\\\gdy~~m=1~~\Rightarrow~~a_{n} =log_{2} 2^{1} =log_{2} 2=1\\\\gdy~~m=-2~~\Rightarrow~~a_{n} =log_{2} 2^{-2} =-2\cdot log_{2} 2=-2\cdot 1 = -2\\\\gdy~~m=3~~\Rightarrow~~a_{n} =log_{2} 2^{3} =3\cdot log_{2} 2=3\cdot 1 = 3\\\\gdy~~m=4~~\Rightarrow~~a_{n} =log_{2} 2^{4} =4\cdot log_{2} 2=4\cdot 1 = 4\\\\gdy~~m=-5~~\Rightarrow~~a_{n} =log_{2} 2^{-5} =-5\cdot log_{2} 2=-5\cdot 1 = -5\\\\ gdy~~m=0~~\Rightarrow~~a_{n} =log_{2} 2^{0} = log_{2} 1=0 \\\\itd.[/tex]

[tex]korzystam~~ze~~wzorow:\\\\log_{a} a=1\\\\log_{a} b^{c} =c \cdot log_{a} b\\\\log_{a} 1=0[/tex]