Odpowiedź :
Odpowiedź:
Szczegółowe wyjaśnienie:
Ostrosłup prawidłowy czworokątny - czyli u podstawy kwadrat o boku = "a", i wysokość ostrosłupa H = a
Czyli objętość ostrosłupa:
V = 1/3 * Pp * H - Pp - pole podstawy
czyli:
V = 1/3 * a² * H = 1/3 * a³
teraz jeśli jednocześnie objetość V jest równa:
V = 2√2x³/3 to:
a³/3 = 2√2x³/3
a³ = 2√2x³ = 2^(3/2) x³
a = 2^(1/2)x = x√2
czyli:
przekatna a√2= x√2*√2 = 2x
pole podstawy a² = (x√2)² = 2x²
Odpowiedź:
a= dł. krawedzi podstawy=a
a= wysokosc bryły= a
V= 1/3* Pp* wysokosc = 1/3* a²*a= a³/3
janek zapisał tak: V= 2√2x³/3, czyli :
2√2x³/3=a³/3 2√2 x³=a³ √8 x³=a³
a= x∛(√8) ∛(√8)= (8¹/²)¹/³= (8¹/³)¹/²=[(2³)¹/³]¹/²=2¹/²=√2
a= x√2 pole podstawy= a²=(x√2)²=2x²
przekatna podstawy= a√2=x√2√2= 2x
Szczegółowe wyjaśnienie: