Odpowiedź :
[tex]\text{x oznaczamy nieznany bok trojkata}\\ \\ a) \\ 2^2+x^2=(2\sqrt5)^2\\ 4+x^2=20 /-4\\ x^2=16\\ x=4\\ \\ sin\alpha=\frac{4}{2\sqrt5}*\frac{\sqrt5}{\sqrt5}=\frac{4\sqrt5}{10}=\frac{2\sqrt5}5\\ cos\alpha=\frac{2}{2\sqrt5}=\frac{1}{\sqrt5}=\frac{\sqrt5}5\\ tg\alpha=\frac{4}2=2\\ ctg\alpha=\frac24=\frac12[/tex]
[tex]b)\\ (\sqrt2)^2+x^2=(\sqrt3)^2\\ 2+x^2=3 /-2\\ x^2=1\\ x=1\\ \\ sin\alpha=\frac{1}{\sqrt3}=\frac{\sqrt3}3\\ cos\alpha=\frac{\sqrt2}{\sqrt3}=\frac{\sqrt6}3\\ tg\alpha=\frac{1}{\sqrt2}=\frac{\sqrt2}2\\ ctg\alpha=\frac{\sqrt2}1=\sqrt2[/tex]
[tex]c)\\ 2^2+x^2=(2\sqrt{10})^2\\ 4+x^2=40 /-4\\ x^2=36 \\ x=6\\ \\ sin\alpha=\frac{2}{2\sqrt{10}}=\frac{2\sqrt{10}}{20}=\frac{\sqrt{10}}{10}\\ cos\alpha=\frac{6}{2\sqrt{10}}=\frac{3}{\sqrt{10}}=\frac{3\sqrt{10}}{10}\\ tg\alpha=\frac{2}{6}=\frac13\\ ctg\alpha=\frac{6}2=3[/tex]
[tex]d)\\ x^2+1^2=(\sqrt5)^2\\ x^2+1=5 /-1\\ x^2=4\\ x=2\\ \\ sin\alpha=\frac{1}{\sqrt5}=\frac{\sqrt5}5\\ cos\alpha=\frac{2}{\sqrt5}=\frac{2\sqrt5}5\\ tg\alpha=\frac{1}2\\ ctg\alpha=\frac21=2[/tex]