Odpowiedź:
Szczegółowe wyjaśnienie:
|OA| = |OB| = |OC| = r
|OA| = |OB| ⇒ |∡OAB| = |∡OBA| = (180° - 40°):2 = 70°
|OB| = |OC| ⇒ |∡OCB| = |∡OBC| = (180° - 120°):2 = 30°
|∡ABC| = |∡OBA| + |∡OBC| = 70° + 30° = 100°
|∡AOC| = |∡AOB| + |∡BOC| = 40° + 120° = 160°
|OA| = |OC| ⇒ |∡OAC| = |∡OCA| = (180° - 160°):2 = 10°
|∡BAC| = |∡OAB| - |∡OAC| = 70° - 10° = 60°
|∡ACB| = |∡OCB| - |∡OCA| = 30° - 10° = 20°