Odpowiedź :
Odpowiedź:
B
Szczegółowe wyjaśnienie:
Skoro logarytm o podstawie √7 jest równy dwa, to znaczy że
[tex] {x}^{3} - 20 = { \sqrt{7}}^{2} = 7 [/tex]
Czyli
[tex] { x}^{ 3 } = 27[/tex]
Co oznacza że
[tex]x = \sqrt[3]{27} = 3[/tex]
Odpowiedź:
B .3
Szczegółowe wyjaśnienie:
log _√7 (x³ - 20) = 2
Korzystam z definicji logarytmu :
log_a c = b <=> a^b = c
a > 0 i a =/= 1
Wtedy :
(√7)² = x³ - 20
7 = x³ - 20
-x³ = - 20 - 7
-x³ = - 27 /*(-1)
x³ = 27
x = ³√27
x = 3