Odpowiedź :
Odpowiedź:
[tex]\log_{2}3-4=\log_{2}{3}-4\log_{2}{2}=\log_{2}{3}-\log_{2}{2^{4}}=\\ \\=\log_{2}{3}-\log_{2}{16}=\log_{2}{\frac{3}{16}}[/tex]
[tex]2\log_{5}{4x}+5\log_{5}{y}=\log_{5}{(4x)^{2}}+\log_{5}{y^{5}}=\log_{5}{16x^{2}}+\log_{5}{y^{5}}=\\ \\=\log_{5}{16x^{2}y^{5}}[/tex]
[tex]3\log_{3}{4n}-2\log_{3}{5n}=\log_{3}{(4n)^{3}}-\log_{3}{(5n)^{2}}=\\ \\=\log_{3}{64n^{3}}-\log_{3}{25n^{2}}=\log_{3}{\frac{64n^{3}}{25n^{2}}}=\log_{3}{\frac{64n}{25}}[/tex]
[tex]\log2k^{5}-5\log k^{3}-2\log k=\log2k^{5}-\log k^{15}-\log k^{2}=\\ \\=\log(\frac{2k^{5}}{k^{15}}:k^{2})=\log(\frac{2}{k^{10}}*\frac{1}{k^{2}})=\log\frac{2}{k^{12}}[/tex]
[tex]\log_{2}5+\log_{4}9=\log_{2}{5}+\log_{4}3^{2}=\log_{2}5+2\log_{4}{3}=\\ \\=\log_{2}5+\frac{2}{\log_{3}4}=\log_{2}5+\frac{2}{\log_{3}2^{2}}=\\ \\=\log_{2}5+\frac{2}{2\log_{3}2}=\log_{2}5+\log_{2}3=\log_{2}(5*3)=\log_{2}15[/tex]
Szczegółowe wyjaśnienie:
Odpowiedź:
log ₂ 3 -4= log ₂ 3 - log ₂ 16=log ₂ (3/16)
2 log ₅ 4x +5 log ₅ zy= log ₅ (4x)² + log ₅ z⁵y⁵= log ₅ ( 16x²z⁵y⁵)
3 log ₃ 4n - 2 log ₃ 5n= log ₃ (4n)³- log ₃ (5n)²= log ₃ ( 16n³*25n²)=
log ₃400n⁵
log 2k ⁵- 5 log k³-2 log k= log 2k⁵- log k ¹⁵- log k²= log ₁₀ ( 2k⁵: k ¹⁵: k²)=
log ₁₀2k⁻¹²
log ₂ 5 + log ₄ 9= log ₂ 5 + log ₂9/log ₂ 4=log ₂ 5 + 1/2 log ₂9=
log ₂5+ log ₂3=log ₂15
Szczegółowe wyjaśnienie: