Odpowiedź :
Odpowiedź i wyjaśnienie:
[tex]ln\dfrac{K_1}{K_2}=\dfrac{\Delta H}{R}(\dfrac{1}{T_2}-\dfrac{1}{T_1})\ /\cdot\dfrac{R}{\Delta H}\\\\\\\dfrac{R}{\Delta H}\cdot ln\dfrac{K_1}{K_2}=\dfrac{1}{T_2}-\dfrac{1}{T_1}\\\\\\\dfrac{1}{T_2}=\dfrac{R}{\Delta H}\cdot ln\dfrac{K_1}{K_2}+\dfrac{1}{T_1}\ /\cdot T_2\\\\1=T_2\cdot \dfrac{R}{\Delta H}\cdot ln\dfrac{K_1}{K_2}+T_2\cdot \dfrac{1}{T_1}\ /\cdot \Delta H\cdot T_1\\\\\\\Delta H\cdot T_1=T_2\cdot T_1\cdot R\cdot ln\dfrac{K_1}{K_2}+T_2\cdot \Delta H\\[/tex]
[tex]\Delta H\cdot T_1=T_2(T_1\cdot R\cdot ln\dfrac{K_1}{K_2}+\Delta H)\\\\\\\\T_2=\dfrac{\Delta H\cdot T_1}{T_1\cdot R\cdot ln\dfrac{K_1}{K_2}+\Delta H}[/tex]