Witaj :)
Wzór na pole trójkąta prostokątnego, o przyprostokątnych a oraz b prezentuje się następująco:
[tex]\large \boxed{P_{\Delta}=\frac{1}{2}ab}[/tex]
Podstawmy dane z zadania do wzoru:
[tex]\large \boxed{P_{\Delta}=\frac{1}{2}(5-\sqrt{3})(5+\sqrt{3})=\frac{5^2-(\sqrt{3})^2}{2}=\frac{25-3}{2}=\frac{22}{2}=11\ [j^2]}[/tex]
Skorzystano ze wzoru skróconego mnożenia:
[tex]\boxed{(a-b)(a+b)=a^2-b^2}[/tex]
ODP.: Pole tego trójkąta wynosi 11 [j²].
Skorzystano ze wzorów skróconego mnożenia:
[tex]\boxed{(a-b)(a+b)=a^2-b^2}\\\\\boxed{(a-b)^2=a^2-2ab+b^2}[/tex]