1. Usuń niewymierność z mianownika.
a)
[tex] \frac{1}{ \sqrt{7} } [/tex]

b)
[tex] \frac{1}{4 \sqrt{5} } [/tex]

c)
[tex] \frac{6 \sqrt{2} }{ \sqrt{3} } [/tex]
na już! ​


Odpowiedź :

a)

[tex] \frac{1}{ \sqrt{7} } = \frac{1 \times \sqrt{7} }{ \sqrt{7} \times \sqrt{7} } = \frac{1 \sqrt{7} }{ \sqrt{49} } = \frac{1 \sqrt{7} }{7} = \frac{1}{7} \sqrt{7} [/tex]

b)

[tex] \frac{1}{4 \sqrt{5} } = \frac{1 \times \sqrt{5} }{4 \sqrt{5} \times \sqrt{5} } = \frac{1 \sqrt{5} }{4 \sqrt{25} } = \frac{1 \sqrt{5} }{4 \times 5} = \frac{1 \sqrt{5} }{20} = \frac{1}{20} \sqrt{5} [/tex]

c)

[tex] \frac{6 \sqrt{2} }{ \sqrt{3} } = \frac{6 \sqrt{2} \times \sqrt{3} }{ \sqrt{3} \times \sqrt{3} } = \frac{6 \sqrt{6} }{ \sqrt{9} } = \frac{6 \sqrt{6} }{3} = 2 \sqrt{6} [/tex]

Myślę że pomogłem ;)

Odpowiedź:

[tex]a)\ \ \frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}}\cdot\frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{7}}{7}\\\\\\b)\ \ \frac{1}{4\sqrt{5}}=\frac{1}{4\sqrt{5}}\cdot\frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{4\cdot5}=\frac{\sqrt{5}}{20}\\\\\\c)\ \ \frac{6\sqrt{2}}{\sqrt{3}}=\frac{6\sqrt{2}}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\not6^2\sqrt{6}}{\not3_{1}}=2\sqrt{6}[/tex]