Odpowiedź:
[tex]d)\ \ \left(\sqrt[3]{(\sqrt{64})^2}\right)^3=(\sqrt[3]{64})^3=64\\\\\\e)\ \ \sqrt[3]{-\frac{125}{1728}}:\sqrt[3]{\frac{1000}{216}}=-\frac{5}{12}:\sqrt[3]{\frac{125}{27}}=-\frac{5}{12}:\frac{5}{3}=-\frac{\not5^1}{\not12_{4}}\cdot\frac{\not3^1}{\not5_{1}}=-\frac{1}{4}\\\\\\f)\ \ \sqrt[3]{-0,001:(-\frac{27}{64})}=\sqrt[3]{-\frac{1}{\not1000_{125} }\cdot(-\frac{\not64^8}{27})}=\sqrt[3]{\frac{1}{125}\cdot\frac{8}{27}}=\sqrt[3]{\frac{1}{125}}\cdot\sqrt[3]{\frac{8}{27}}=[/tex]
[tex]=\frac{1}{5}\cdot\frac{2}{3}=\frac{2}{15}[/tex]