Rozwiązanie:
[tex]$ \lim_{n \to \infty} \Big(\frac{5n-6}{5n+1} \Big) ^{3n}= \lim_{n \to \infty} \Big[\Big(1+\frac{-7}{5n+1} \Big)^{\frac{5n+1}{-7} }\Big]^{\frac{-7 \cdot 3n}{5n+1} }= \lim_{n \to \infty} e^{\frac{-21n}{5n+1} }=e^{-\frac{21}{5} }[/tex]