Odpowiedź :
Witaj :)
Trójkąt równoboczny, to taki rodzaj trójkąta, który ma wszystkie boki jednakowej długości, oraz wszystkie kąty równej miary wynoszące 60°. Wzór na pole trójkąta równobocznego wygląda następująco:
[tex]\Large \boxed{P_{\Delta}=\frac{a^2\sqrt{3} }{4} }[/tex]
Gdzie:
a - długość boku trójkąta
W zadaniu mamy podaną wysokość. Wzór na wysokość w trójkącie równobocznym to:
[tex]\Large \boxed{h=\frac{a\sqrt{3} }{2} }[/tex]
Gdzie:
a- długość boku trójkąta
Skorzystamy w pierwszej kolejności ze wzoru na wysokość w trójkącie równobocznym, aby wyliczyć długość boku:
[tex]5\sqrt{3} =\frac{a\sqrt{3}}{2} \ / \cdot 2\\\\10\sqrt{3}=a\sqrt{3} \ / :\sqrt{3} \\\\\boxed{a=10}[/tex]
Znając długość boku liczymy pole:
[tex]\Large \boxed{P_{\Delta}=\frac{10^2\sqrt{3} }{4} =\frac{100\sqrt{3}}{4} =25\sqrt{3}\ [j^2]}[/tex]
ODP.: Pole trójkąta równobocznego wynosi 25√3 [j²].