Odpowiedź:
zad 1
f(x) = 3(x - 2)² + 5 = 3(x² - 4x + 4) + 5 = 3x² - 12x + 12 + 5 = 3x² - 12x + 17
zad 2
f(x) =x² + 4x - 5
a = 1 , b = 4 , c = - 5
Δ = b² - 4ac = 4² - 4 * 1 * (- 5) = 16 + 20 = 36
W - współrzędne wierzchołka = (p , q)
p = - b/2a = - 4/2 = - 2
q = - Δ/4a = - 36/4 = - 9
W = ( - 2 , - 9 )
zad 3
A = ( - 1 , 5 ) , B =( 3 , - 1 )
xa = - 1 , xb = 3 , ya = 5 , yb = - 1
S - środek odcinka = (xs , ys)
xs = (xa + xb)/2 = ( - 1 + 3 )/2 = 2/2 = 1
ys = (ya + yb)/2 = (5 - 1)/2 = 4/2 =2
S = ( 1 , 2 )