Odpowiedź :
Cześć!
Obliczenia
[tex]\frac{\sqrt3\cdot\sqrt{27}}{\sqrt{72}:\sqrt8}=\frac{\sqrt{3\cdot27}}{\sqrt{72:8}}=\frac{\sqrt{81}}{\sqrt9}=\frac{\sqrt{9^2}}{\sqrt{3^2}}=\frac{9}{3}=3\\\\\frac{\sqrt{125}^2}{\sqrt[3]{125}}=\frac{125}{\sqrt[3]{5^3}}=\frac{125}{5}=25\\\\(\sqrt[3]{192}:\sqrt[3]6)\cdot\sqrt[3]2=\sqrt[3]{192:6\cdot2}=\sqrt[3]{32\cdot2}=\sqrt[3]{64}=\sqrt[3]{4^3}=4\\\\12\sqrt{1\frac{25}{144}}=12\sqrt{\frac{169}{144}}=12\cdot\frac{\sqrt{169}}{\sqrt{144}}=12\cdot\frac{\sqrt{13^2}}{\sqrt{12^2}}=12\cdot\frac{13}{12}=13[/tex]