Metoda przeciwnych wspolczynnikow:
[tex]\left \{ {{x+2y=8 /*(-2)} \atop {2x-y=1}} \right. \\+\left \{ {{-2x-4y=-16} \atop {2x-y=1}} \right. \\-4y-y=-16+1\\-5y=-15 /:(-5)\\y=3\\2x-3=1 /+3\\2x=4 /:2\\x=2[/tex]
Metoda podstawiania:
[tex]\left \{ {{x+2y=8 /-2y} \atop {2x-y=1}} \right. \\\left \{ {{x=8-2y} \atop {2x-y=1}} \right. \\\left \{ {{x=8-2y} \atop {2(8-2y)-y=1}} \right. \\\left \{ {{x=8-2y} \atop {16-4y-y=1}} \right. \\\left \{ {{x=8-2y} \atop {16-5y=1 /-16}} \right. \\\left \{ {{x=8-2y} \atop {-5y=1-16}} \right. \\\left \{ {{x=8-2y} \atop {-5y=-15 /:(-5)}} \right. \\\left \{ {{x=8-2y} \atop {y=3}} \right. \\\left \{ {{x=8-2*3} \atop {y=3}} \right. \\\left \{ {{x=2} \atop {y=3}} \right.[/tex]