Wzory viet'a i ich wyprowadzanie.
Oblicz wartość wyrażenia podanej funkcji, nie obliczając miejsc zerowych.
Bardzo proszę o wyprowadzenie wzoru i obliczenie.
Siedzę już kilka godzin i nie mogę sobie akurat z tymi przykładami poradzić :(
Daje moje wszystkie punkty.


Wzory Vieta I Ich Wyprowadzanie Oblicz Wartość Wyrażenia Podanej Funkcji Nie Obliczając Miejsc Zerowych Bardzo Proszę O Wyprowadzenie Wzoru I Obliczenie Siedzę class=

Odpowiedź :

Rozwiązanie:

[tex]f(x)=-x^{2}+2x+3[/tex]

Na początek obliczmy:

[tex]$x_{1}+x_{2}=-\frac{b}{a} =\frac{-2}{-1} =2[/tex]

[tex]$x_{1} \cdot x_{2}=\frac{c}{a} =-\frac{3}{1} =-3[/tex]

[tex]a)[/tex]

[tex](x_{1}-x_{2})^{2}=(x_{1}+x_{2})^{2}-4x_{1}x_{2}=2^{2}-4 \cdot (-3)=4+12=16[/tex]

[tex]b)[/tex]

[tex]$\frac{x_{2}}{x_{1}} +\frac{x_{1}}{x_{2}} =\frac{x_{2}^{2}+x_{1}^{2}}{x_{1} \cdot x_{2}} =\frac{(x_{1}+x_{2})^{2}-2x_{1}x_{2}}{x_{1} \cdot x_{2}} =\frac{2^{2}-2 \cdot (-3)}{-3}=\frac{4+6}{-3} =-\frac{10}{3}[/tex]

[tex]c)[/tex]

[tex](x_{1}-2)^{2}+(x_{2}-2)^{2}=x_{1}^{2}-4x_{1}+4+x_{2}^{2}-4x_{2}+4=x_{1}^{2}+x_{2}^{2}-4(x_{1}+x_{2})+8=[/tex]

[tex]=(x_{1}+x_{2})^{2}-2x_{1}x_{2}-4(x_{1}+x_{2})+8=2^{2}-2 \cdot (-3)-4 \cdot 2+8=[/tex]

[tex]=4+6-8+8=10[/tex]

[tex]f(x)=-x^2+2x+3\\\\a=-1\\b=2\\c=3\\\\x_1+x_2=\dfrac{-b}{a}=\dfrac{-2}{-1}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{3}{-1}=-3\\\\\text{a) }(x_1-x_2)^2=x_1^2-2x_1x_2+x_2^2=x_1^2+2x_1x_2+x_2^2-4x_1x_2=\\=(x_1+x_2)^2-4x_1x_2=2^2-4\cdot(-3)=4+12=16[/tex]

[tex]\text{b) }\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x^2_2}{x_1x_2}+\dfrac{x^2_1}{x_1x_2}=\dfrac{x^2_1+x^2_2}{x_1x_2}=\dfrac{x^2_1+2x_1x_2+x^2_2-2x_1x_2}{x_1x_2}=\\\\=\dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\dfrac{(x_1+x_2)^2}{x_1x_2}-\dfrac{2x_1x_2}{x_1x_2}=\dfrac{(x_1+x_2)^2}{x_1x_2}-2=\\\\=\dfrac{2^2}{-3}-2=-\dfrac{4}{3}-2=-1\dfrac{1}{3}-2=-3\dfrac{1}{3}[/tex]

[tex]\text{c) }(x_1-2)^2+(x_2-2)^2=x^2_1-4x_1+4+x^2_2-4x_2+4=\\=x^2_1+x^2_2-4(x_1+x_2)+8=x^2_1+2x_1x_2+x^2_2-4(x_1+x_2)+8-2x_1x_2=\\=(x_1+x_2)^2-4(x_1+x_2)+8-2x_1x_2=2^2-4\cdot2+8-2\cdot(-3)=\\=4-8+8+6=10[/tex]