Odpowiedź :
[tex]a)\\\sqrt[3]{-1\frac{61}{64}}-\sqrt[3]{-3\frac38}+\sqrt[5]{-7\frac{19}{32}}=\sqrt[3]{-\frac{125}{64}}-\sqrt[3]{-\frac{27}8}+\sqrt[5]{-\frac{243}{32}}=-\frac{5}4-(-\frac32)+(-\frac32)=-\frac54+\frac32-\frac32=-\frac54=-1\frac14[/tex]
[tex]b)\\\sqrt[3]{-\frac8{27}}+\sqrt[3]{-\frac{216}{125}}-\sqrt[5]{-\frac{243}{32}}=-\frac23+(-\frac65)-(-\frac32)=-\frac23-\frac65+\frac32=-\frac{10}{15}-\frac{18}{15}+\frac32=-\frac{28}{15}+\frac32=-\frac{56}{30}+\frac{45}{30}=-\frac{11}{30}[/tex]
[tex]c)\\\sqrt[3]{2\frac14}*\sqrt[3]{-1\frac12}-\sqrt[3]{1\frac79}*\sqrt[3]{-1\frac13}=\sqrt[3]{\frac{9}4*(-\frac32)}-\sqrt[3]{\frac{16}9*(-\frac43)}=\sqrt[3]{-\frac{27}8}-\sqrt[3]{-\frac{64}{27}}=-\frac32-(-\frac43)=-\frac32+\frac43=-\frac{9}{6}+\frac{8}{6}=-\frac16[/tex]
[tex]d)\\\frac{\sqrt[3]{750}}{\sqrt[3]{-6}}+\frac{\sqrt[3]{432}}{\sqrt[3]{-2}}-\frac{\sqrt[3]{-320}}{\sqrt[3]{-5}}=\sqrt[3]{\frac{750}{-6}}+\sqrt[3]{\frac{432}{-2}}-\sqrt[3]{\frac{-320}{-5}}=\sqrt[3]{-125}+\sqrt[3]{-216}-\sqrt[3]{64}=-5+(-6)-4=-5-6-4=-15[/tex]